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EXTENDED ITERATIVE WEIGHTED LEAST SQUARES: ESTIMATION
OF A LINEAR MODEL IN THE PRESENCE O COMPLICATIONS* .

A, F. GOODMAN

Senior Technical Staff to Vice President
Information Systems Subdivision
McDonnell Douglas Astronautics Company— Western Division

ABSTRACT

~Thi: paper introduces an extended iterative weighted least squares
procedure, denoted=By~EIWLS; for solution of a classical problem in analysis
of scientific and technical information: estimation in the presence of compli-
cations, of the coefficients for linearly independent component signals in a
linear model, from observations on the component signals and a composite
signal containing the linear model plus noise which is nonstationary and/or
correlated with unknown covariance matrix.()ér_x_ iterative weighted least
squares procedure, denoted by IWLS, is deve opé‘&'l‘é’r estimation in the
absence of complications. Then IWLS is extended to perform the estimation
subject to: (1) estimators being consistent with a priori information.describ-
ing the random variation of coefficients over all possible states of nature
(e.g., all systems of a specified type from a production process); (2) utiliza-
tion of data from all pertinent channels in the estimation of coefficients which
appear in the linear models for more than one data channel; and (3) replace-
ment of the linear model by a new linear model containing only representa-
tive component signals which are highly-descriptive, but not highly-related,
when there is a large number of component signals in the linear model and
some of them are highly-related, FORTRAN computer programs have been
written to implement IWLS and EIWLS on the IBM 7094 for the case of
nonstationary and uncorrelated noise, '

%*The paper forms a portion of Chapter 2 in Computer Science and
Statistics: Partners in Progress, a forthcoming volume edited by
A.F. Goodman and N. R. Mann. It represents a current and revised
version of the author's ""Estimation of Coefficients in a Linear Model by
Extended Iterative Weighted Least Squares, ' Autonetics Publication
X4-1290/32, North American Rockwell Corporation, August 1964. Sec-
tion 1 has been revised, Section 7 and the References have been expanded
and brought up to date, and Section 8 has been summarized.
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1. INTRODUCTION AND SUMMARY

Since the early 19th century, estimation of a linear model from data
subject to error has been a classical problem in analysis of scientific and
technical information, The least squares procedure for solution of the
problem, formulated by Gauss in 1802 and published by Legendre in 1806, is
essentially the first statistical technique developed for analysis of informa.
tion (Ref 41). However, the effectiveness of least squares and related pro-
cedures mainly depends upon characteristics of the error,

This paper introduces an extended iterative weighted least squares
procedu+~a, denoted by EIWLS, for solution of the classical problem in the
presence of complications, A complete description of the problem, which
may be termed a generalized statistical regression problem, is: estimation
in the presence of complications, of the coefficients for linearly independent
component signals in a linear model, from observations on the component
signals and a composite signal containing the linear model plus noise with
unknown characteristics, Component signals are sometimes called input or
independent variables, the composite signal is sometimes called an output
or dependent variable, and the rioise is sometimes called a residual or
random error, Since EIWLS was developed originally for error analysis of
an inertial navigation system, the signal-and-noise terminology is employed.

Pertinent characteristics of the noise are contained in the square
array of noise variances and covariances, called the noise covariance
matrix. Noise is s2id to be stationary and uncorrelated when that matrix is
a constant multiple of the identity matrix, ncnstationary and uncorrelated
when it is a diagonal matrix, stationary and correlated when each row of it
is a proper arrangement of elements in the first row, and nonstationary and
correlated otherwise,

Consider estimation in the absence of complications, If the noise
covariance matrix is known, then the optimum estimators of t'.e coefficients
are the weighted least squares estimators determined by its inverse, If the
noise covariance matrix is not known, its estimaticn appears to be a reason-
able step toward estimation of the coefficients.

Estimation of the linear mcdel is, itself, required to estimate the
noise covariance matrix. Goodman (Ref 1) presented an iterative weighted
least squares procedure, denoted by IWLS, to accomplish the estimation
when the noise is nonstationary and/or correlated (i.e., not stationary and
uncorrelated--in which case, the least squares estimators are optimum)
with unknown covariance matrix, Briefly, IWLS:

1, Obtains the least squares estimators of the coefficients,

2. Calculates an estimator of the noise covariance matrix by using
the composite signal and its least squares estimator, based upon
the least squares estimators of the coefficients, to estimate the
necessary noise variances and covariances,

3. Obtains the weighted least squares estimators of the coefficients
which are determined by the inverse of this matrix estimator,




4, Iteratively repeats 2 and 3, with the least squares estimators of
‘the coefficients replaced by the latest set of weighted least squares
estimators of the coefficients, and obtains a new estimator of the
noise covariance matrix and a new set of weighted least squares
estimators of the coefficients,

5. Continues the iteration in 4 until a preassigned level of stability
is attained,

The complications and their treatment were also summarized in general
terms by Goodman (Ref 1), This paper is an extension of Ref 1 and intro-
duces an improved and extended IWLS, Improvement of IWLS, as presented
in Ref 1, involves improved estimation of the noise covariance matrix, In
the following paragraphs, each complication and the corre“ponding extension
of IWLS to EIWLS is briefly discussed, o :

Coefficients in the linear model are constant for a particular state of
nature (e.g., a particular system of a specified type from a production
process), However, ‘they may vary randomly from one state of nature to
another, A priori information describing the coefficients' random variation,
over all possible states of nature (e, g., all systems of that'specified type
from the production process), may exist from previous analyris; and the
estimators ought to be consistent with it, To insure this, a medification of
IWLS permits the incorporation into the procedure of a priori information
corcerning the means and covariance matrix of the coefficients,

Data may cxist from several data channels, and a coefficient may
appear in the linear models for more than one data channel. The data from
all pertinent channels should be utilized in the estimation of that coefficient,
This may be accomplished by properly arranging the coefficients and data
from all channels into a form suitable ior the application of IWLS,

There may be a large number of component signals in the linear model
and some of them, though linearly independent, may be highly-related.
Component signals are called highly-related in this paper when they pcssess
a high degree of linear dependence., For sccuracy and ease of computation,
it is frequently desirabie to replace the linear model by a new linear model
containing only representative component signals which are highly-descriptive,
but not highly-related, and to estimate the coefficients of the representative
component signals in the new linear model. To accomplish this, the set of
component signals is partitioned into subsets of highly-related ones and the
appropriate weighted average of a subset is selected to be the representative
component signal for that subset in the new linear model. The coefficients
in the new linear model may then be estimated by IWLS, In addition, an
estimator for the coefficient of the representative component signal for a
subset is apportioned among the coefficients of component signals in the
subset, via the weighting scheme used in the selection of that representative
component signal,




Additional operatxons, such as pre-editing of data and inclusion of
estimates based upon previous sets of data into the a priori mforma.txon, may
be added without too much difficulty,

Although EIWLS is applicable when the noise is nonstationary and/or
correlated, it has been programmed for the computer only in the case of
nonstationary and uncorrelated noise, Two FORTRAN computer programs,
the basic one (Ref 2) and another (Ref 3) using Efroymson's technique (Ref 4)
to preselect the representative component signals, have been written to
implement IWLS as presented in Ref 1; and a FORTRAN computer program
(Ref 5) has been written to implement EIWLS,

Iterative statistical procedures such as EIWLS extract considerably
more information from the data than do noniterative, closed-form procedures
such as least squares. In view of recent computer hardware and software
development, iterative procedures have been feasible to implement and
evaluate for some time and continue to become more so with the passage of
time, It is therefore '"penny-wise and pound-foolish' not to utilize EIWLS,
when dictated by theory, statistical tests such as the one given in Ref 42, or
examination of the data. Indeed, EIWLS is even more appropriate today than
at the time of its development,

Since iterative statistical procedures bridge the gap between the two
extremes of ncuiterative, closed-form and optimur statistical procedures,
it is somewhat surprising that the development of a meaningful theory for
iterative statistics has been essentially neglected in favor of the continued--
and almost academic--characterization and comparison of the two extremes,
This is well illustrated by the survey of related literature in Section 7. It
is noteworthy that the quite-recent Ref 42 contains an iterative procedure
which is closely-related to IWLS, as well as an approach to the construction
of confidence intervals and statistical tests, when the noise is nonstationary
and uncorrelated,

Ref 41 recommends the consideration of four questions regarding an
iterative statistical procedure:

1. Under what conditions does the iterative procedure converge?
2. How rapidly does the iterative procedure converge?

3. Under what conditions does the iterative procedure converge to
the proper solution?

4, To what extent does the iterative procedure improve upon a
noniterative, closed-form procedure?

Partial answers to all four questions are provided by Sections 2-8.

Those interested in only the essence of EIWLS may confine themselves
to Section 1, Sections 6, 7 and 8 augment Section 1 with a discussion, a



comprehensive survey of related literature, and an illustrative example, In
Sections 2 through 5, the statistical details of EIWLS (whose comprehension
may require careful reading by the nonstatistician) are displayed, with a
minimum of development and amplification, along with some reasonable
alternatives which are listed in footnotes,




2. ITERATIVE WEIGHTED LEAST SQUARES

Suppose that t represents time or some other auxiliary variable.
At time t: X,(t), X3(t), ..., X,(t) denote linearly independent com-
ponent signals; 81, 82, ..., B denote unknown coefficients; Y(t)
denotes a composite signal; and ¢(t) denotes noise with mean zero,
variance 02(t) and covariance of(t, t') between ¢(t) and ¢(t'). Then the

linear model* is Bij(t) and the represe=tation of Y(t) as containing
J=1
the linear model plus noise is

Y(t) = 2Bjxj(t) + ¢(t). (1)
J=

Given the explicit observations in of Xj(t) for j=i,2, ..., p and

Y; of Y(t), which imply the implicit observation ¢; = Y; - iBiji

J=
of €(t), at time t; fori =1,2, ..., n>p, the generalized statistical
regression problem without the complicating restrictions is the esti-
mation of 81, B2, ..., ﬂp when €1, €35 ...y € have mean zezro and
unknown n-by-n covariance matrix 2 of variances 0. = diz =0 (ti) and
covariances O0y; = a(th, t)).

Complicated expressions in this and subsequent paragraphs may
be written in compact form by the introduction of matrix notation. Let

-
ij

55-'- for j =1,2,...,p,
X,
_ °

X=X Xp0ee 0 XD

* A constant term may be included in the linear model by setting
Xl(t) identically equal to one.
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and the matrix alter e3o of the generalized statistical regression
problem without the complicating restrictions is the estimation of
B given X and Y, wten X is unknown.

The weighted least squares estimators of B ﬂ . B
which are determined by the n-by-n matrix P
B =
Wil Wip e W
w w e W

12 22 77 2n

w W e e W
In 2n nn

e nad

of weights wy; (or any matrix that is a constant multiple of W) are
thuse miniinizing the quadratic form

= (Y - XB) W(Y - XB).

It may be shown that thcese estimators are given by

A A A A -1
= L ¥ ¥
Bw (Berwz' ""ﬁwp) (X'wWX) X'wy
- 21
and have covariance matrix (X' W X) ! X'WIWX(X'WX) " . They
are called the least squares estimators if W is the n-by-n ident.t,
matrix L.

In the sc¢nse of possessing minimum variance among ali unbiased

P

linear estimators, of provid.ng an estimator of Z Bi in which has
SA

mirimum variance among all unbiased linear estimators of it and of

being maximun likelihood estimators when the noise is normally

distributed, the optimum estima-ors of 81, B, .. ﬁp are thc

weighted least squares estimators which are dete rmmcd by X -

(Ref 6, Chapter 14 and Ref 7, Sections 1.3-1.5)}). The least squares

estimators are, therefore, optimum only if the nouiss is stationary

and uncorrelated, and ¥ is a constant multipie of the identity natrix.




For nonstationary and/or correlated noise, it is not unreasonable to
presume that estimation of £ and then eastimation of B3, 82, ..., B
by weighted least squares is superior to estimation of 83, B2,..., 3Dp

by least squares. Estimation of Z FJ in fori=1, 2, .,., nis,
j=1

however, required to estimate 2. This may be accomplished via

estimation of ﬁ 1 Bz, ey ﬁp. Hence, iterative estimation of

81, B2, ... ﬁp and then X, as accomplished by IWLS, should pro-

vide mnprovement over least squares estimation of Bl, ﬁz, - 30

Stated in symbols, IWLS:

A A A
1. Okbtains the least squares estimators 31(0), ﬂz(o), .o ,Bp(o)
from

A A A A R
B =8, 8, Bt 0

1)

2. Calculates an estimator 3
squar<s estimator

P
Z 3. x (4)
=1

» by using Y; and its least

fori =1, 2, ..., nin an appropriate estimation scheme to
calculate the necessary oi(l 2 and

3. btains the weighted least squares estimators P,l(l),
A1), . B 1) which are determined by ( ! from

g0 @M g Mgy
P

x Wy x] i gW)y (5)

A A A
4, Iteralively repeats 2 and 3, with 31(0) ﬂz(o) . B (0)

and Qi(o) fori=1,2, ..., n repla ed by e latest <;f
weighted least squares estimators ce C and
§‘\c;‘-iA(c)x (6)
. & B X5




PEv.

fori=1, 2, ..., n, and obtains a new estimato f(c*‘l) and

new set of wejghted least squares estimators 1(C+1),
BZ(CH), caes p(C+l) from

glctl} _ g (c*1) & (c+i) g (ctl)y,
@_ _(Bl 'BZ r-'-»ﬂp )

@y i ety ly L o

5. Continues the iterationin 4 forc =1, 2, ..., c¥-1, where
c* either is determined when a valid measure of the change
in (), AL SN p(c) becomes less than a preassigned
constant or i, itself, a preagsigned constant. n estimator
for the covariance mat-ix of 8 c), Z(C). e lép(C is given

by {x'(i(c))"lx}-l x*(“z(c))-l i(c‘*l)(i(c))-lx[X:(i(c))-lx]'

[ A A
hich simplifies to [X‘(z(c))'l}{] when (et = 2(€) for
g =Ijandc =0, 1, ..., c*.

The selection of an appropriate estimation scheme to use in 2
is influenced not only by the type of noise and the data, but also by
statistical considerations.

When the noise is nonstationary and uncorrelated,

. 2 2 2
T =diag (o, 0,7 ..., @)

An estimator of 012 18 provided by

Gi(c)z - (Y, - *?i(c'l))z ferc=1,2,...,c*andi=1,2,...,n. (8)
These estimators are somewhat unsatisfactory because each of them
is based upon only one observation; and they should be combined to
produce more satisfactory estimators, In moat applications, it is
reasonable to assume a linear model for the variation of dz(t). Let
Ty(t), Tp(t), ..., Tp(t) be known functions of t and vy, v,, ..., Vp be
unknown coefficients with p + ¥ < n; and assume

P
o°(t) = 3. v T, (0.
k=1




c e RSB

P
A simple version of Z v, T, {t}, which is employed by the computer
&= k' k P

program {Ref 5), is the polynomial z Yy tk-l. Suppose that
k=1

Twi = Tklti) fori=1,2, ..., nandk=1, 2, ..., P,

T ]
T

TkZ

= fork =1, 2, ..., 2,

7!_'-3

T

v = and

ﬁ = forc =1, 2, ..., c*,

10




Then an appropriate estimation scheme® to use in 2 is

B My Wy eyt g02, (0)
| sed . o (C). 3 (C)’ ; (c)),
; - 1 2
A - A
- [(E(C 1)) Tl 1o [(z(c 1)) l]Za(c)Z (10)
. 5
: forc =2, 3, ..., c* and
P P P
elch . .. {c) a (c) s (cj
= )
3 diag Z_ BTy % Tkz,...,; v T ) an
k=1 k= =1
forc =1, 2, ..., c*. It might be observed that the use of Equa-
tions (9)-(11) produces a simple iterative procedure for obtaining a

*This estimation scheme is preferatle to

2for i=1,2,..., Manac =1,2,...,c%*

. M
3.(‘:)2:{ 1 2: Gh( 12 for i=M+1,M+2,. ... n-Mandc=1,2,...,c%
he

i : \(c)

\n+M i+l he h

fori=n-M+],n-M+2,...,nandc=1,2,...,c¥

which is the suitably truncated running average of 2M+1 estimators
&h(c)Z that was suggested by Ref 1, when it is reasonable to assume
a linear model for the variation of 02 {t); and the estimation scheme
suggested by Ref 1 is preferable, when such an assumption is not
reasonable.

11
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solution to the maximum likelihood equations*, whose accuracy may
be checked, for nonstationary, uncorrelated noise which ig normally

P
distributed with oz(t) =z Z Vka(t). To establish an upper limit for
k=1
. . a (<) 2 ] .
all weights, all estimators Z vk Tld of oi must be boundad away

k=1
from zcro by a lower limit,

Consider the case of stationary, correlated noise, and let the

observations be taken at different and equally-spaced times with
t; =tg +i At. Then o(t, t') = 0iA) is a function of only the separation

time A = jt-t'l, Opi = ofr) is a function of only r = th-il and
[0(0) o(l) o(2)..-0(n-1)

¢(l) a(0) o{l1)...0(n-2)

Z = |o(2) 6(1) 0(0)...0(n-3)

L(1(1'1-1) o(n-2) a(n-3) ... a(0)

An estimator¥** of a(r) is

a(c) :—Ln-r
o (r) n-rz (Yi_

é\,.(c-l)
i=1 !

MY, , - ¥, ) (12)

forc=1,2, ..., c*and =0, {, ..., n-1

*The investigation which ,ielded Equations (9)-(11) was partially
prompted by the conjecture of Dr. T. L. Gunckel that IWLS, as
presented in Ref 1, might provide 'n iterative solution to the
maximum likelihood equations.

x:¢An alternative estimator, which takes the estimation of
Bi1. B2, ..., Bp explicitly into account, divides the sum by n-p-r
and limits rtor =0, 1, ..., n-p-1,

12
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it is usuaally reasonable to agssume a linear model for the variation of
o{A)*. Suppose that T1iA}, T2{A), ..., Tp(A) are known functions
of A, ¥1,v2, ..., ¥p are unknown coefficients with p + P <n and

4
ala) - ; v Ti(A),
=1

whose simple version is

P
v(A) = Z vak"l.
k=1

I Ty = Tr((i-1) Aty fori=1, 2, ..., nandk=1, 2, ..., P,

P —
Tkl

TkZ

= fork=1,2,..., P,

J_'-]

T

e

k"_J

T = (21' "'1;2’ so ey _-[:p)n

"

Vp

hves wad

*¥Either of these estimators may be used, as i8, when 1t 18 not reasonable to
assume a linear model 1or the variation of ¢(A).

13
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and

L¢“v(‘:)(n- 1)]

N = diag (n, n-1, ..., 1),

then an appropriate estimation scheme to use in 2 is given by

PALEE VAN AL IR LU N R O A (13)
and
P P P p ]
A (c) a (c) Z a (c) A (c)
v T v T v T v T
g—l kK Tkl l;l koke Yk ks lA?-:-l k kn
p p P p
A (c) a {c) a (c) A (c)
v T v T v T v T
S 1<Z=1 k k2 2:'1 Kk ki kzil k k2 k§=:l k lkn-1
P p P P
s (c)p 5 (e)y 5 () o ()p
kZ"i k k3 IZI K k2 kz;l k okl kz=1 k kn-2
P p P P
s (c) A (c) A (c) A (c)
Z-: k “kn Z"k Trn-1 Z_"k Ty n-2 2 Vi Ty
| k=1 k=1 = =1 |
(14)

forc=1,2, ..., ck,

The weight matrix N is used in Equation (13) because it constitutes a
lim{)le means of reflecting the increase of statistical dependability
c

in & )(r) with n-r. It is necessary to require that all estimators
- & () (c)
g: vk Tki of 0 "'(r) be bounded above by the estimator
=1

14




R >4 (o) ()
B 14 of @ 7(0). A :~mmoa engineering model for the
) & k kl

variation of g(A) is
U(A) = On e- VAn

which is nonlinear in the unknown coefficients 0g and v. This

exponential variation of 0(A) may be treated* by transforming the
model to the linear one,

log, o{A)=log 0o, - vA = Vo~ VA,

and proceeding as (aigove with 3(‘:)(?), T)i» T2i,» v], and ¥, being
replaced by log, é'Nr), 1, (i-1) At, vg and - v, respectively.

A proper modifi~ation of Equations (12) - (14) would eliminate
the restriction of observations to different and equally-spaced times.
In addition, an appropriate combination of the techniques used for
nonstationary, uncorrelated noise and for stationary, correlated
noise may be employed in the event of nonstationary, correlated
noise. The calculations would then become more complicated and,
perhaps in some cases, prohibitive,

e < s

A
inversion of Z(C) in 3 must now be accomplished. If the noise is

. A (c),-1
i nonstationary and uncorrelated and d (t) = 2 v k(t), (')
be written in closed form as k=1
‘ Afe)-1 _ .. 1 1 1
:- (2!N7! - aiag : e —
' & s lc), % a(c) < & (c)
v T v T v, ' 'T
k
‘: kZ=l k ki k2:1 k k2 kz=l kn,
! forc =1, 2,...,c% (15)

P
*If preferred, o VA may be approximated by Z vak'l and

¥1, ¥2,...,Vp may be estimated as in Equation (13); or ¢g and v may
be estimated by those (nonlinear) estimators that minimize

n .
Z (n-itl) [3“’(1-1) - aoe-v(b l)At] 2, but are difficult to compute,
i=1

15
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The performance of this inversion has not yet been investigated for

correlated noise,

A A
A valid, yet simple, measure* of the change in Bl(c), BZ(C). e

3 () (c-1)
gl A
bp(c) for 5 is max J )

j=l,2,....p A (c)
B;
*Depending upoen the application, max
i=1,2,...,n

| éj(C) ) B“J_(C-l) :;,_(C) X {,‘(C-l)

Il
&I
3

izl

2 a {c
1 BJ

measure of this change.

16
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may be a more desirable




3. INCORPORATION OF A PRIORI INFORMATION

Let B), Bz. e ﬂ vary randomly over all possxble states of nature '
with means B, % Bo¥% ... Bp* and covariance matrix I of variances
Yj2 . YJj a.nc]i covarxances YJk Introducing matrix notation yields

X3
E* = pz«
n
P
and
r‘ —
1 Y12 ... VYip
r- |M2 Y22 Y2p
LYlp Y2p Ypp

The a priori information, which exists from previous analysis, is knowledge
of ¥ and I

Two quite reasonable methods to ensure that estimators of ﬁ Bz,
will be consistent with the a priori information are: mcorporatxon
oi 91 a%d I into the quadratic form to be mmxrmzed by the estimators; and
employment of a linear combination A % + (I, - A) B* (a special case of
which is xé‘ )+(l - \) Q_* with A = I an < N < 1) as the vector of
estimators, where A is a matrix which mea.sures one's relative confidence

in the data (as represented by ((c*)) and the a priori information (as
represented by Q* Suppose

Q* « (x-xpy (£ (x-xp+(p-pr! (p- pn

17




is the quadratic form that incorporates 3* and I and is to be mini-
mized®, Then 1tAmay be observed that the corresponding estimators
Al , AZ* +++» Bp* which incorporate g and I' are given by

e a W P el

A

E* = (31*' 52*, .o B

= [x'(i(c*))'lx + r’ll -1 [x'(i(c*))‘1 v+ r! /3*]
(16)
. [x'(ﬁ(c*))'l X + r‘ll'l [x'(ﬁ'.(c*))'l x <)y ! @_*]

A é(c*) s (:p _A) B+,

*If 0< i < l then two other quadratic forms that incorpurate B and I’
and might be minimized are:

QO= Ay -xgy (2™ iy xp)

+ {1 (X8 - XB*)" (gleh)d (XB - xBx),

with the corresponding estimators élQ, ézo, R ﬁpthat INCOTrpor -
ate B+ and I being yielded by

_@I (él' éZ’ . é O) = Xé )4 (1 - ) g'-“; and

QA:A(x - xBy () vy - xgy -0 -AnB go T8 B,
with the corresponding estimators élA'ﬁZ' ces BPA&?\M incorporate

B+ and I being yielded by

BA- (BN A CIVAVERN PP ARUNE

A

s -i)r'll'l IXX' SOty ca ot @.“*]
One suchj\ls

A . 7 Y -
A L -All)
P
) A A A 212
for Al being anormof A (e.g., (i ﬁ Ank ) ).
)= 1 -

18




where A is the p-by-p matrix of elements Xjk defined as
A x) - -11- -
A = [xi (i(c )) 1 X+ l] 1 {X' (i(\ 3) 1 X]'

Note that ﬁ(C*) and i(c*) may be replaced by é(U) and L, if it is desired

to incorpo;ate the a priori information into least squares rather than
IWLS.

(17)

It migh: easily be shown that Al"‘. AZ*. R ép* would be the
maximum likelihocd estimators if £ and 2 (¢*) were equal for both the

noise and the coefficients being normally distributed,

4. PROPER ARRANGEMENT OF COEFFICIENTS AND DAT/A

To denote the kth data channel, for k=1, > ..., q, prefix a k to
the subscripts of the previously-introduced notation and obtain, in particu-
lar: Xkl(t). sz(t), PN kak(t), ﬁkl' Bkz, PR kak, Yk(t) and (k(t);
xkjl = in(tkl) for J = 3., 2, ..., pk' ‘_"kl = Yk(tkl) and ‘kl = ‘k{tkl) = erl

Pk
- X ‘BkJ Xgji fori=1,2,..., n,; and
j=1
= -
xkjl
X, .
kj2
-X-K’- fOX'J-'l;Zn » Pk:
X .
ki
b s
X = KX, o, X ),
Py
| 19
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The analogues of Equations (1) and {2) for the kth channel are now

(18)
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and

¢
—4q

heows. o)

which has the effect of stacking the data and coefficients associated with
channcls 2, 3, ..., q under the data and coefficients associated with
channel 1. If Ohkij is the covariance between €p; and €“j and the
ny-by-nj matrix ¥ is




- =
Thr11 k12 . "hklnk
k21 k22 L ”hkznk
th =
e d a, [/ 4
hknhl ‘ﬂxnhZ P hknhnk

o1 L i iang e € € € 4
«nen ithe PVArians matrix of 110 €320 ,aml. 21, 22'“.’(2“

fqlp qu: " e ey ‘qnq is

211 212 zlq
2'12 EZZ zZq
T -
2! L
iq 22q qu

Suppose that Bkl_]l. Bkzjz' vy Bkrjr are the same (i.e., the

kr)' All but cne of them, for example Bk jy» are superflucus and
should be eli:ninated from consideration; and the pertinent columns of
xkl' sz, o ers Xkr and -Ykl' sz. e Xkr (i.e., the pertinent data

from channels k3, ky, oouy k.. ) should be utilized in tne estimation of
ﬁkljl' This may be accomplished in a simple {thcugh not simple-
appearing } manner, by. deleting ﬁkziz’ 'BijS' ey ﬂkrjr from 8

kl—.l
replacing column numbex E Py + jl in X by the sum of column
K=l
- - K -
kl 1 kz 1 " 1
numbers P, +i., Z E, + a0 o0 Z p, +j in X (which has
ey LA = k2 - k “r
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same coefficient appears in the linear mwodels for channels kl' Kp, .0,

- .
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o the effect of alining* the jpth column of Xp,, the 3th column of XkB' Cae

the j.th column of Xkr under the j;th column of X}‘il in the formation of

kl-i
the Z P, + ‘j1 th column of X}; and deleting column numbers
k=1
‘ k;{i k3-1 k{-:l
; 122' Pk + j?_- Z pk + 33, 2 pk + jr from X. U more convenient,
=] k=1 k=1

cne of Bkljl’ 8 kznﬁz’ oo ﬁkrjr other than ﬁkljl may be usel as the
focal point for the alinement.

After all duplications among the ﬂk~'s have been treated ae indi-
cated, the coefficients and data {rom all channels are properly arranged;

and a properly arranged analogue of Equation {2) is given, in the same
form as before, by

Y=XB+¢. (20)

A proper arrangement of the data from all channels has to be con-
sidered in determining the form of %, and in estimating its necessary
variauces and covariances for IWLS. In particular, the requirement of
nonstationary, uncorrelated noise for this proper arrangement meansg
that not only i and ‘kj {i.e. , observations of tnhe noise at any two
times within any channel) must be uncorrelated, but also that €y and
€L (i.e., observations of the noise st any two times in any twc channels)
must be uncorrelated.

q
One may view the p < Z Py resulting columns of X as p vectors
3 k=1
X;o0fn = Z n, observations X;. on the p component signals X{t), the
=] & k Ji J
p elements of 3 as the p coefficients B. of X.{t), the n elements of Y as

L 3 ' ol
n observations Y; on the composite signal Y(’t), the n elements of ¢ as

n observations €; on the noise ¢{t), (he nl elements of & as the n vari-
ances oiz or € a.ndnz-ncovzarxam:es Chi of € and ¢; and Equation {20)
as the matrix alter ego of Equation (1,

* . ‘ . -
Dr. J. C. Pinson proposed the alinement as a simple way to utilize

the pertinent columns of X, ., X.., ..., X, .
P k) k7 ky
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5. PARTITIONING, SELECTING AND APPORTIONING®*

For exposition purposes, it is desirable: to change the number of
linearly independent component signals and corresponding unknown
coefficients in the linear model to m; to redesignate them by Zl(t), Zz(t)a

.0 Zy(t)yand @y, @y, ..., an; and to transform Zy (t), via multipli-
cation by a posuive scale factor, so that the units of Zy(t) will become the
unite of Y(t) and @, will become unit-less for k=1, 2, ..., m. This
transformation wiﬁ be compensated for in the technique described.

Let Zgj = Zy(t;)fori=1, 2, .., nandk =1, 2, ..., m; @&,
€2, .. .» @ VALY randomly over the ensemble of all possible states of
nature with means a*, a¥, ..., am* ard covariance matyrix I’ * of
variances yk*z = ¥gk* 2nd covariances Yhk* and

%1

22

_2_'.k fork=1, 2, ..., m,

N
~
*

kN

in
1

%
The suggestion to irvestigate the feasibility of, awd devise an analysis
for, such a technique was made by Mr. H. J. Goldfisher and
Mr. L. H. Pinson.
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Then the linear model, ... matrix aiter ego and the corresponding

a priori information become }d a Z Z a Z - Zaarda¥and I' =
k=l
When m is large and/or some of Z{t}, Z,(t), ..., Znp,(t) are highly-

rel ted consideration of accuracy and ease of computation frequently

dictates thatz 2, k(t) be replaced by a new linecar model containing
k=l

only representative component signals which are highly-descriptive, but

not highly-related. Suppose that the p< m representative component

signals, whose units are the units of ¥Y(t), and corresponding unit-less

unknown coefficients are Xj(t), Xz(t), .., X (t ) and ﬁl’ BZ o Bp;

Xji = Klydfors =1, 2, ..., nandj - 1,2, . ., p B, B, .

vary randomlv aver the ensemble of all possible states of nature w1t¥)

mean . B, ﬂp* and covariance matrix I of variances

J =Y and covariances yhis and
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‘puand —
" Y12 .. Mp
Y12 Y22 L. Y2
r-
ylp y?,p .. ypp
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Hence the new liniear model, its matrix alter ego and the corresponding

a priori information are 2 ,BjXJ,(t), i ’Bj'}-(j = X_@ and _@* and I
3=t B

m P
One manner of replacing Z akZ. {t) by 2 B.X.(t), and in particular
k=1 K )z J )
Zg by Xg, is to partition Zl(“' Zz(t), ..., Zm(t) ine subsets Si’
SZ' RN of highly-related Z.k(t);s and to select an X;{t) to represent
S: (i.e., each Zi (t) in S_j) for j =1, 2, ..., p. In addition, it is desir-
able to be able to apportion an estimator of each Bj armong the aL's

which correspond {0 the Z,(t)'s in Sj‘
A measure of the degree of linear dependence vetween Zh(t} and
Z,(t) is needed to accomplish this partitioning. One such mezasure,

based upon ..%h and z‘k' 18 the cosine

H

¥

-

. z'hi Zkl Z2'Z
s d izl —h —k 1)
d = = = ™ (L)
h'k kh n B} n [ - v~ 1;'2:
2 oAl 1e [(zozowe oz )}
[(Z Zhl )<Z Z,kl>J g?‘n —g.h X k
1z ] ; 1=1
ot the angle Dy, = Dy} between Z4 and Zp. If
y n
= 1 -
Z, - > z, {22)

171

and
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then the sample correlation coefficient

Z

—k

between Zjp and Zy 1s the cosine of the angle between Zy - Zy and

- Zy and also a measure of the degree of hnear dependence between
and Zi (1), Observe taat the multiphivation of Zyp(t) by ¢y and

S or does not change the magnitude of dpgk and ry and changes the

sign of dy and ryyp SRRY

’ tany three ot the diyg's and any three of the rhi's satisty

e 3

only for oy, and ¢ having different signs. It aght be

Getnoan st ralest that

the inequalities

- -1
- L (Am it

o




Consequently, it is feasihle to utilize either dy), or ryj in a partitioning
procedure for obtaining S;, Sz, ..., Sp from Z(t), Zp{t), ..., Zm(t).
The pertinent one tc use 18 dy) when a constant term is not ‘ncluded in
the linear model and ry, when a constant term is included in the linear
model. Without loss of generality, dpk will be used in the text; but it
should be replaced by Thi where appropriate.

A reasonable partitioning procedure should not be affected by a
renumberiug of Zl(t), Zo(t), ..., Zm(t). The procedure alsc ought to
yield S|, Sz, ..., Sp with a relatively high degree of linear dependence
existing between any two Z,(t)'s in the same S; and a relatively low
degree of linear dependence existing between any two Z, {")'s in different
Sj's. Finally, it ahould provide some control over the size of p.

The partitioning procedure employed by EIWLS: ¥

1. Computes

(Y]
-

k-1 m m
d = 2. |9 z- RPN ET R
h=1l h=k+1 h=1

fork=1,2, ..., m.

2. Selects that Zk(t), say Zk!\i): whose dk 15 smallest |
nte S, if and only 1f j dkky >d, where cos 45°

3 Puts Zy{t) 1
1 <d«<i1sapreassigned constant vwhuch should be

g.7071
selected to reflect the desire for the existence of a relatively
mgh degree of hinear dependence between any two £ {t)'s in
the same S; and a relatively low degree oi linear dependence
between an’}',; two Zp(t)'s an different .76 and the desire for a
reiatively small p.

4 Selects that Zy{t) not 1n 3, say Zkz(!), whose 4, 15 smallest

among the Zy(t)'s not n 5

5. For Zy{t) r~tan §j. purs iints 5 1 and only of gdy‘_\kz 1 >,
t S

and for Zy{t)in S;, remover: from S, and puts 1t
13

and only :f ’dkkg i; = i d"«.k; g

t

Mr P L Hsu developed the details of this procedure
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6. Continues in the same manner and selects that Zy(t) not in
S1, S3, ..., Sj_z or sj-»l» say ij(t). whose dk is smallest. . =

among the Z)(t)'s not in S1, Sa, ..., Sj-z or sj-l .

7. For Zy(t) not in S). 82, ..., Sj.2 or sj-l' puts it into S; if
and only if | dik; P d; and for Zy(t) in 51, Sz, ceed Sj_z or
Sj-l' removes it from S;, S, ..., Sj-z or Sj-l and puts it
into S; if and only if l dick: ') max ' diky, | ’

! I he=1,2,. .., e hl.

8. Continues in the same manner until selecting a Z(t) not in

S1s S, ..., sp-Z or sp-l' say ka(t),for which l dkkpl?_ d

for all the Zi(t)'s not in S}, S, ..., p-2 or Sp.] and,
thereby, defining p .

9. For Zy(t)notin Sy, Sz, ..., Sp_z or Sp_), puts it into Sp.
and for Zy(t)in S), Sp, ..., Sp_z or S,.1, removes it from
Sl, Sy, ...y p-2 OF sp-l and puts it into Sp if and ouly if

| S| >j=1,z‘??f.,p-1 | S

10. Inspects the resulting Sl’ Sz, ..., S, to determine if |dhk|
is sufficiently large for all Zy(t) and Zy(t) in the same S;, ;£
| dhkl is sufficiently small for all Z)(t) and Z)(t) in different
Sj's and if p is sufficiently small .

11. Modifies Sl’ SZ' SN Sp and d until 10 is satisfied to a
reasonable extent.

It is notationally convenient to define 0 = m, < m<my<...
<mp_1< mp = m and renumber Zy(t), 2Zp(t), ..., Zm(t) with ij_l.,.l(t),
Zm, +2(t) ..., ij(t) being in Sj forj=1, 2, ..., p. Using
Equation (25), it might also be demonstrated that each Zy(t) in S; may
be transformed, via multiplication by dmjk/ ' dmjk '. so that dj,; becomes

positive when Z, (t) and Zy(t)arein S; for j=1, 2, ..., p. This trans-
formation will also be compensated for in the ensuing discussion.

m P
The replacement of a Z (t) by B.X.(t) meaus that X (t),
1= k 'k £ i 1

X,(t), ..., X(t) should be selected to satisfy

P m
2 BiXdv)= 2 e,z (). (28)
Jj=1 iy k=1

31
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In additi.a, the representation of Sj by Xj(t) suggests that X;(t) should
be gelected to satisfy i

m,

J
Z X szk(t) and (29)

B.X.{t) =
33 k=m 1

X;(t) = v, Z (t)v ) 0‘
! k=mz 4 KK

i-1
where Vmj. i+l vmj—-1+2’ “ee "'mj are non-negative weights whose

sum is one, for § =1, 2, ..., p. Sinmple analytic conazequences of the
validity of Equations (29} and (30) for all values of ¢t are

= = \i. + § P
a, kaj for k m; 1, ™ 2, ..., m, and {31
i
1, :
i
B. - ) a forj=1, 2, ..., p. (32}
. k=mzl+3 k
jo

Regardless of the true relationships (or lack of them) among
amjwl”' amj—l+2' SN amj' the selecting of Xj(t) tc . -present Sj

(i.e., Equations (29} ard {30)) induces analytic relaticnships among
G j*1r Smj 1420+ o0 Bmj and 5. .. e., Equations (31j and (32))

which cause them to become anaiytically and probabiiistically
indistinguishable (i.e., yield all »f them once any one of them is
determined) for j =1, 2, ..., p. The sclecting, in turn, induces a
web of analytic relationships, which are not difficult to derive, into
the structure of the a priori information:

o % = * for = +i, r +2, ..., . b
% vkﬁj or k mj--ll mj—l 2 m:J (33)

32




e A s s

\'l.u.qu‘.mg 'B

s

2
Y, ¥ -)’m*=vk Y for;(—mjwiﬁl, m_}—1+2' "m_j; (35}
Yot T Y Y “ = Y Y ¥ fox k= htl, he2, ... m, end
h=m, ,+], m, l+2’ , m_-1; and (36)
-1 j-
m, 2
2 J
o= 5 y. ® forj =1, 2, ..., p. {37)
i =, K
k--m_ +1
-1
Conasideration of this structure produces¥®
m,
i
v, =y ¥/ y. ¥ =y */y for
©F h=mzj' s B kT
j-1
k‘-mj-l*l mj—l+2’ , m,and j =1, 2, ..., p {38)

as the natural set®¥ of weights to use in Equavions {30} and {31}. 1.

i N R

% !

and so @y and B; occur with equal probability when ay, hence Bj, is
normally distributed ior k = mj_1+l, mj_1+2, cven Oy and j = 1,
2y, ..., P. \

“These weights were propcsed by M.. C. M, Shipplett.
**An alternative set, which assigns equal weight to ij l+1'
Z““j-l+2’ RN Zmi in Equation (30) and to fmjalﬂ’ amj_1+2. .
am‘j in Equation {31}, is given by Vi = m-- for k = mj_l*l,
m, *t2, ..., m, and j ¥ i, 2, ., P
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Hernce, the selecting of X)({t}, X5(t), ..., Xp(t) from Zj{t),
Zy(t), ..., Z(t) is obtained by

m,

i y, * \\
k . )
xj(t)= Z z tiforj=1,2,...,p: {39)

the selecting of _}_(J, 2(_2, e Ep from Zy, 22, ..., :Z_Zm i8 accom-
plished by

m, ;
X 1 } i m = Zkl for
] k=T 5
2
n=m, ,*t1
j-1
i=1, 2, ..., nandj =i 2, «... p {40}

in particular; a.ad the
apportioning of an estimator Aj (e.g., ,éjm), éi(c*) or éi*) of /’33'
among amj-l”' a“‘j-i+2' ehes amj is provided by ;

Yk*
a, - - A for
k. m, 3
J
¥ 3
h=m, _+1 h
i-1
k=m, +¥1, m,  +2, ..., m ,andj=1, 2, ..., p. v<1)
j-1 j-1 J

The vombination of the two previous transformations to each Zy(t) in

Sj (i.e., .ts multiplication by the product of the original dmjkl'l dmjkl
and the corresponding positive scale factor) may now be

compensated for by performing the same combination of transforma-
tions to the corresponding &k (i.e., its multiplication by the product

of the original dmjk/l dmjkl and the corresponding positive scale

factor). Indecd, it might be proved that these transforrnations may
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. be climinated by replacing vy in Equations (30), (31), (33), (35), (36), (39),
(40) and (41) with the product of the original dm-k/'dm-kl' the corresponding
positive scale factor and vy. J J

6. DISCUSSION

A procedure has been described for estimation of the coefficients for
lincarly independent component signals in a linear model from observations
on the component signals and a composite signal containing the linear model
plus noise which is nonstationary and/or correlated with unknown covariance
matrix, when the coefficients may vary randomly over all possible states of
nature and they may appear in the linear models for more than one data
channel, and when there may be a large number of component signals in the
lincar model and some of them may be highly-related, The procedure,
denoted by EIWLS: properly arranges the coefficients and data from all
channels; partitions the resulting set of component signals into subsets of
highly-related ones and selects a representative component signal from each
subset to include in the new linear model; obtains the least squares estima-
tors of the coefficients in the new linear model, and then iteratively calcu-
lates an estimator of the noise covariance matrix and obtains the weighted
least squares estimators of these coefficients which are determined by the
inverse of the matrix estimator; incorporates the a priori information into
estimators of the coefficients in the new linear model; and apportions an
estimator for the coefficient of the representative component signal for a
subset among the coefficients of component signals in that subset,

During the development of EIWLS, the difficulty of the generalized
statistical regression problem and the requirement for an operational analysis
within a reasonable period of time combined to dictate that the security of
rigorous thecoretical proof be occasionally sacrificed for the expedience of
apparent theoretical implication plus intuitive justification. The computer
provided a feasible means to implement the procedure and to empirically
test it on ecxamples, when the noise is nonstationary and uncorrelated,
Empirical testing of the procedure and its parts has included not only the
analysis of fabricated examples (e.g., those in Section 8 and Ref 1), but
also the successful evaluation of inertial navigation systems via the analysis
of real field-test data, Therefore, EIWLS is presented as a theoretically
promising, intuitively appealing and empirically tested (to a limited extent)
solution for the generalized statistical regression problem,
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The feasibility of IWLS depends upon the practical inversion of
the estimators $(¢) of the noise cova.iance matrix £. This inversion
has to be investigated in the case of correiated noise. When the
noisn is staticnary and corvelated and the observations are taken at
different and equaily-spaced times, the form of {c} is particularly
gimple and inversion may not be too difficult, A simplifying assump-
tion, which i® tenable in a large number of scientific problems, is
that the noise covariance ¢, t'} becomes zero gs the time difference
l t-t'| increases beyond a certain limit, Then z(c) has blocks of zero
elements and invergion by partitioning may be practical.

Consider the IWLS estimateors élic) éz(c), seesp épi‘*) of the
coefficients 8y, 83, ..., ﬁ&‘ forc =1, 2, ..., c¥. In order to pro-

vide estimators of 8§, , Bp_of sufficient stability for a
rticula ap’glication, ") 32(‘;) o {c) need not converge to

E(C*). =¥), ooy Bpl€Ti, but only possess a valid measure of

change {e.g., max l (éj(c) - ﬁj(c-l))/ﬁj(c) l ) which becomeas

21,200 ¢ sP
v s™Le & 2p
lesa than a particular preassigned constant for ¢ = ¢,, c,+l,..., c*.

Suppose thacﬂé {e) ﬁ(c 1)):’&\ (c)! bj for ¢ = cj, ¢5+l, ..., o

Then é (CJ) A (C‘* 1) .o AJ(C ) appear to be approaching or oscil-
lating m a ban (whone wndth depends upon bJ) ahoui an asymptotic
value and could probably be combined, by some technique (e. g.,
extrapolation), to yield an improved estimator of ﬁJ This improved
estimation of 8 should be investigated. A measure of the inherent
accuracy in t}w estimation of ﬁJ, which depends upon the matrix X of
c.mponent signal observ.tions and the vector Y of composite signal
cbservations {and, implicitly, the vector € of noise observations) is
provided by bj and cj. Note that there may be a considerable varia-
tion among the inherent accuracy in the estimation of 83, 82, ..., Bp.

At each iteration, the guiding principle of IWLS is toc provide the
optimum estimators of ,31. 25 eeey ]3 and then ¥, based upon the
available information at that iteration concermng 2 and then By,

Bs. .. Bp This principle is simiiar to Bellman'e principle of
optimality in dynamic programming (Ref 8, page 83), which states
that '"an optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the
first decigion.” In addition, IWLS extracts considerably more infor-
mation frormn the data than :loes least squares and may be termed an
"estimation servomechanism'' or an ''adaptive estimation procedur.."
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It is not at all unreasonable to conjecture that IWLS will produce,
except perhaps under pathological conditions, near-optimum esti-
mators of 8;, B2, ..., Bp and 3., However, the stability and
estimation properties of IWLS should be further investigated, both
theoretically and empirically.

It is informative to elaborate upon two previously mentioned
characteristics of the optimum estimators for B3, B2, ..., Bp. The
firat characteristic is that they minimize the appropriate statistical

distance (Qz"l)l’lz between the data vector Y and the estimator of the
matrix alter ego for the linear model Xf. One has no knowledge

P
whatdoever of the difference between the linear model Z ﬁj in at

i=l
time t; ard its resulting estimator o of the difference between Bj and
its estimator, but only knowledge ot the probabilistic properties of
these differences. The second characteristic is that for the optimum
estimators of ﬁl, B2, ..., Bp, each of these diiferences has mean
zero and mii_mum variance among all corresponding differences
resulting from unbiased linear estimatore ~f 8, Bz, ..., Eip. In
other words, the optimum estimators of 81, 82, ..., Bp do not
always produce an estimator which is closest to the quantity being
estimated; but they do produce an estimator whose probability dis-
tribution is more tightly spread about thie quantity than the proba-~
bility distribution of any estimator resulting from unbiased linear
estimators (e. g., the ieast squares estimators) of 8], B2, ..., Bp.

The three sets of estimators of 81, g2, ..., 3p that incorporate
the a priori information, one set giver by Equation (16) and the other
two sets listed in the footnote on page 18, have been empirically
tested on an example for which 81, 82, ..., Bp had mean zero and
covariance matrix I" = diag (y1%, y22, ..., yp“! of variances vi%
YZZ» cees ypz that varied. Although this testiny provided empirical
justification for the use of Tquation (16), the results were comewhai
inconclusive; since the versicn of the scalar weigémt presented in that
footnote was too insensitive to the variation in y;~, ),22, ey ypz and
required an extreme variation in them to itself vary from zero to one,
Additional empirical testing of the three sets of estimators that
incorporate the a priori information, utilizing a more satisfactory
version of A, 18 needed, The improved estimators of ﬁi: B2, ...,
gp agd he apgropriat 1y modified, vergion of (C*), rathier than

l(c ), Z(C* y e ép(c*) and 2(c*})) should be used to calculate
these estimatorsa,




s Fo auenit S

S

. Sipce thg ﬁoefficients omi_.1+l: m;_1+2, ..., @m; of the component
s‘xgna‘ls in the jth subset S; becOme analyfically and prob&bilistically indis-
tinguishable from the coefficient Bj of the representative component signal Xj

for S; for j = 1, 2, ..., pduring selecting and apportioning, the procedure
usedto partition the component signals Zj(t), Z2(t), ..., Zm(t) into subsets
Sy, Sz, ..., Spis very important. Hence, the possibility of improving upon

the partitioning procedure employed by EIWLS ought to be investigated, One
approach would be to define a measure of the quality of a partition and to
choose that procedure which maximized this measure,

7. SURVEY OF RELATED LITERATURE

In order to place EIWLS in proper perspective, a survey of related
literature is now presented, This literature is grouped, for convenience,
into seven categories of articles: those treating the properties of the least
squares estimators, a set of weighted least squares estimators or the
optimum estimators (Ref 9-16); those treating estimation of residuals or
iterative estimation procedures (Ref 17-26); those treating estimation pro-
cedures for correlated noise (Ref 27-30); those treating estimation proce-
dures which incorporate a priori information (Ref 31-36); and those treating
procedures for replacing the linear model by a new linear model and
estimating the coefficients in the new linear model (Ref 4, 21, 34, 35, 37,
38, 39 and 40).

Grenander and Rosenblatt (Ref 9, Sections 7.1 - 7. 4) derive important
asymptotic properties of the least squares estimators and the optimum
estimators of the coefficients By, Bz, ..., Pp when the noise is stationary.
The relationships among the columns of the component signal matrix X and
the eigenvectors of the noise covariance matrix Y and the conditions on the
eigenvalues of £, required for the least squares estimators and the optimum
estimators of By, B3, ..., Bp to be equal, are obtained by Muller and Watson
(Ref 10). Using the eigenvalues of certain matrices, Magness and McGuire
(Ref 11) compare the covariance matrices of the least squares estimators

and the optimum estimators of By, B2, ..., Pp: and Golub (Ref 12) compares
the covariance matrices of a set of weighted least squares estimators and
the optimum estimators of fj, B2, ..., PBp.




Zyskind (Ref 13) and Watson (Ref 14) discuss the estimation problem in
. genera}; and necessary and sufficient conditions for the least squares and

Fhe optimum estimators of By, B, ..., Bp to be equal, or effectively equal,
in particular., The contribution of errors in estimating weights to the vari-.
ances of Py, B2, ..., By for nonstationary and uncorrelated noise and for a
special case of correlated noise, is treated by Williams (Ref 15). Both
Williams (Ref 15) and McElroy (Ref 16) state necessary and sufficient condi-
tions for the least squares and the optimum estimators of By B2+ . .s Pp to be
equal. The above asymptotic properties, relationships, conditions and

comparisons should be useful in the investigation of procedures such as
IWLS,

Material relevant to the estimation of regression residuals, and
thereby )., is presenuted by Thiel (Ref 17 and 18) and Koerts (Ref 19). When
the noise is nonstationary and uncorrelated with variance

p r
o-z(t) = E Bjxj(t) 0'2, Prais and Aitchison (Ref 20) propose an
=1

iterative estimation procedure that is IWLS with the appropriate estimator

f:(c) of the noise covariance matrix 2; and Fisher (Ref 21) proposes two
iterative solutions (modified forms of Newton's method of approximation) to
the maximum likelihood equations resulting from normally distributed noise,
Also analogous to IWLS is an iterative estimation procedure described by
Turner, Monroe and Lucas (Ref 22) for the case of the linear model being
replaced by the quotient of two polynomials in the component signal X(t) and
the noise being stationary and uncorrelated. Mandel (Ref 23) develops an
iterative estimation procedure, closely related to IWLS, to treat the linear
model B + BpX(t) with nonstationary, uncorrelated noise. -‘The convergence
properties of E are treated by Telser (Ref 24).

Iterative estimation procedures which iterate over time, combining
past data and estimators with new data, have appeared for some time in the
engineering literature, Two early examples of such procedures are con-
tained in Ref 25 and 26,
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. An excellent survey of articles concerned with estimation (and hypothe-
sis testing) procedures for correlated noise is presented by Anderson

(Ref 27), In the event of a linear model B + B2 X(t) and stationary, corre-
lated noise that is normally distributed with

iy o.Zp O.ZPZ . azpn-l
a2p P ¢2p L glpn-2
T - o2pl ¢2p g2 o glpn-3
alpn-1g2pn-2,2,n-3 . pir/
——— 4

Murthy (Ref 28) discusses an iterative solution to the maximum likelihood
equations and an explicit criterion for its convergence, Goodman (Ref 29)
suggests a noniterative procedure, which performs the estimation in the
frequency domain rather tnan in the time domain, when the noise is station-
ary and correlated, The estimation problem. with a system of linear models
for several data channels and noise correlated over both channels and time,
is covered by Parks (Ref 30),

From two different points of view, Raiffa and Schlaifer (Ref 31,
Sectionsl3,2 - 13, 7) and Theil (Ref 32) cover the incorporation of a priori
information into the estimation procedure for stationary, uncorrelated noise
which is normally distributed with variance ¢2 either known or unknown,
Gunckel (Ref 33) incorporgtes‘a priori information into estimators that
reduce to the estimators B)% B,% ..., f,* of B, Bor vup )(3 in Equation(16)
when the noise has (mean zero and) covariance matrix E(C* P The incorpora-
tion of a priori information dgscribed by Drucker (Ref 34) is in essentially
the same form as B* = (B1* f2% .. ,,‘g *)'. Chipman (Ref 35) presents
material concerning the properties of p* (plus perhaps g® and pA), as well
as to partitioning, selecting and apportioning. Judge and Takayama (Ref 36)
treat inequality restrictions, for incorporating a priori information into the
estimation procedure,
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Efroymson (Ref 4) proposes a stepwise selection of representative
cdmponent signals via selection of: the best component signal Zi(t) to use as
the representative component signal Xj(t) in the linear model ﬁlxl(t); the
best Zk(t) to use with X, (t) as the representative component signal X»(t) in
the lincar model lel(t} + pZXZ(t); ...; and the best 7 (t) to use with
X)), X)), ..., Xp_](l) as the representative component signal Xp(l) in

P

the linear model Z Bjxj(t). A selection of representative component signals
: : o=l

via an iterative nomination, of the best subset of p-p' Z;, (t)'s to use with a

subset Xy (t), Xa(t), ..., Xpu(t) of p' Zy(t)'s as the representative component

signals Xp' + l(t), Xp' + 2(t), N Xp(t) in the linear

p
model Z ﬁixj“) and then of the best subset of p'Zk(t)'s to use with
j=1 A
that subset )fp|+1(t). Xp|+2(t), .. es X)g(t) of. p-p' Z.k(t)'s as the representative
component signals Xl(t), Xa(t), ..., p.(t) in the linear

p

model Z Bij(t) until two subsects renominate each other, is suggested

j=1
by Villone, McCornack and Wood (Ref 37), Both of these procedures simul-
tancously provide least squares estimators »f By, Bp, ..., Bp: However,
the two procedures which are most similar to partitioning, selecting and
apportioning arc the procedure for approximating by representative compo-
nent signals of Fisher (Ref 21) and the procedurce for grouping, selecting and
apportioning of Drucker (Ref 34), Massy (Ref 38), Fortier and Solomon
(Ref 39) and King (Ref 40) also are related to partioning, selecting and
apportioning,

With the exception of Ref 4 and 37, 'his related literature became
known to the author only after the development of EIWLS, One may, never-
theless, note the anticipation of: the iterative estimation procedures of Ref 1
(IWLS) and the subsequent Ref 23, by Ref 20-22 and 28; the incorporation of a
priori information into the estimation procedures of Ref 1 (EIWLS in sum-
marized form) and the subsequent Ref 34, by Ref 31-33; and the procedure
for partitioning, selecting and apportioning of Ref 1 (EIWLS in summarized
form) and the subsequent Ref 34, by Ref 21.
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8. ILILUSTRATIVE EXAMPLE*

’

_An il.lustrative example concludes the paper, Although the example is
described in detail by the paper's original version (see the footnote on page i),

only its input and output are summarized now for simplicity, For the
example:

1. The 272 observations on each of the three channel linear models,
M) (t), My (t) and M3 (t), are constructed from simultaneous
observations on 14 known channel component signals using known
channel coefficients,

[

The 272 observatiors on each of the three independent channel

noises, €) (t), e (t) and €3 (t), are generated to be uncorrelated
with mean zero and known variance o2 (t).

3. The 272 observations on each of the three channel composite
signals, Y (1), Y2 (t) and Y3 (t), are constructed by adding the
appropriate channel linear model and noise observations,

4, The coefficients and data from all three channels are properly
arranged, component signals are partitioned into seven subsets,
and seven representative component signals are selected,

5, The coefficients, B;, in the new linear model are estimated via
least squares (B; (0)), seven iterations of IWLS (§; (7)), incorpora-
tion of a priori’information (pf‘), and the optimmum weighted least
squares (Bgj) for j =1, 2, ...,

6. The corresponding estimators, ‘}(g) (t), \AW(,Z) (t), Q;: (t) and
QOk (t), of Yk (t) and Mk (t) are computed for k = 1, 2, 3,

Graphs of the three channel lirear models and composite signals are
presented in Figures 1, 2 and 3, Tables 1 and 2 show the actual coefficients
in the channel and new linear models and their EIWLS estimators, and a
summary of information regarding estimators of coefficients in the new
linear model, respectively, The latter indicates that: (1) the seventh IWLS
estimators are, mainly, both near-optimum and superior to the least scuares
estimators; (2) the majority of change in the IWLS estimators has occursed
by the third iteration; and (3) the relative change between the sixth

*To implement EIWLS for the example, Mr, P, L. Hsu developed an
experimental computer program of exceptional quality,
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and seveath IW LS estiimators 1s quite small.  Actual comparisons of esti-
inatore of the tiree channcl linear modeis are shown in Figures 4, 5, and b,
The superiority of the IWLS and EIWLS estimators over the least squares
estimators 18 certainly corroborated by Figures 4, 70 and &,
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